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Subdiffusion in time-averaged, confined random walks
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Certain techniques characterizing diffusive processes, such as single-particle tracking or molecular dynamics
simulation, provide time averages rather than ensemble averages. Whereas the ensemble-averaged mean-
squared displacement (MSD) of an unbounded continuous time random walk (CTRW) with a broad distribu-
tion of waiting times exhibits subdiffusion, the time-averaged MSD, &%, does not. We demonstrate that, in
contrast to the unbounded CTRW, in which & is linear in the lag time A, the time-averaged MSD of the CTRW

of a walker confined to a finite volume is sublinear in A, i.e., for long lag times &~

A'~% The present results

permit the application of CTRW to interpret time-averaged experimental quantities.
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The continuous-time random walk (CTRW), in which the
walker waits a time, 7, between two successive jumps, taken
from a waiting-time probability density (WTD), w(7), has
been studied for many years and has proved useful in de-
scribing a variety of diffusive processes in physics [1,2]. A
CTRW with a long-tailed waiting-time distribution and a fi-
nite jump-length variance is a nonergodic process [3,4] and
hence ensemble averages and time averages are, in general,
different. Although many types of experimental measure-
ment provide ensemble averages, certain techniques provide
time series, such as, for example, molecular dynamics (MD)
simulations of a protein molecule or single-particle tracking.
Time averages are then required to extract statistically sig-
nificant properties from the data. Therefore, the question has
arisen as to how the time-averaged properties of CTRW pro-
cesses behave [4-7].

A quantity of principal interest in the context of random
walks is the mean squared displacement (MSD), (x*(7)). A
classical unbounded random walker exhibits (x*(7))=2Dr,
where D is the diffusion constant. Random walks with
(x*(7))~ 7 (with 0< B<1) are said to be subdiffusive.

If, at long 7, the WTD of a CTRW has a power-law tail,
ie., w(r)~717% with 0<a<1, and the variance of jump
lengths is finite, {Sx*)<oo, as is assumed throughout this
paper, then the mean value of the WTD diverges, and hence
the ensemble-averaged MSD becomes subdiffusive, (x*(7))
~ 7% where, for analytical simplicity, the first jump is as-
sumed to occur at 7=0 [2]. In contrast, when the MSD is
calculated as a time average over the interval [0,7], i.e.,

FAn) = f”[x(mr) x(7,) P

A

in which A denotes the lag time, i.e., the time period which
elapses during the displacement from a given starting posi-
tion, then the MSD of the unbounded CTRW is found to
have a linear A dependence as in a classical random walk
[5-7]. However, there is a wide variety of physical cases
where, rather than unbounded diffusion, distinct boundaries
exist, and these can have critical effects on diffusive dynam-
ics [8].

dr,, (1)
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The very active field of single-particle tracking measures
the time-averaged MSD. Further, confinement, which is the
property investigated here, has been identified throughout the
last years as of critical importance in experimental papers on
single-particle diffusion in the cytoplasm [9], in the nucleus
[10], in membranes [11], and narrow pores [12]. Other ex-
periments and a large number of theoretical papers have also
reported the relevance of confinement in diffusion [13].

A considerable body of theoretical work has been recently
reported on the use of CTRW as a model for subdiffusion in
the above and other experiments [5-7,14]. However, the ef-
fects of confinement need to be understood before CTRW
can be applied at all to time-averaged quantities, such as
those measured in single-particle tracking. This paper closes
this conceptual gap.

In recent work, the time-averaged MSD of subdiffusive
CTRWs, &, was examined [5]. Results were presented for
the free, unbounded CTRW and simulations performed of a
one-dimensional CTRW with WTD exponent 0 <a<1 and
reflecting boundary conditions [5]. The present report pre-
sents both analytical and extended simulation results that
demonstrate that &%, on time scales where the boundary con-
dition becomes important, exhibits a power-law A depen-
dence and follows &*~A!=2, in contrast to &~ A<, as sug-
gested for intermediate time scales in Ref. [5]. Furthermore,
the distribution of the random variable & is discussed, al-
lowing connection to be made with experiments. The critical
time, 7., at which the MSD turns over from linear to sublin-
ear is determined. These findings will be required for any
application of CTRW in modeling time-averaged quantities
and in particular for the interpretation of single-particle
tracking measurements.

Here, we assume the walker to be confined in the spatial
interval [0, L], and the following WTD is used:

al T

w(7) =

———, with 0<a<l1, 2
(1 + 7/ 7)1+ @
in which 7, is the unit time. Here, the jump length is a ran-
dom variable with a standard normal distribution and statis-

tical independence from the waiting time. The results found
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FIG. 1. (Color online) CTRW simulations. The results in Figs.
1-4 were obtained as follows. All CTRW simulations were started
at x=0 with an initial jump at 7=0. The jump lengths were taken
from a Gaussian distribution with variance (8x?)=1. The walker
moves in the spatial interval [-10,10], i.e., L=20, with reflecting
boundaries. Uniformly distributed random numbers r € (0,1) were
generated with the long-period random number generator of
L’Ecuyer with Bays-Durham shuffle and added safeguards [16]. A
random variable 7,, with the distribution given in Eq. (2) can be
obtained from the uniformly distributed » from the transformation
7,=r"%—1 [the time unit in Eq. (2) is 7y=1 for all simulations].
Simulations were performed for a=0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and
0.9 on various time scales ranging from =107 up to 10'*. Averages
were taken over 1000 realizations for r=10"—10"! time units and
over 100 realizations from 10'? to 10'* time units. In the figure
above, the dotted lines are time-averaged MSD, &°(A,1), of indi-
vidual realizations of CTRWs, all with @=0.9, rt=10°, and a reflect-
ing boundary (L=20), such that 7.=1.3X 10%7,. Full line: mean
(82(A, 1)) of 1000 of the above simulations.

using w(7) of Eq. (2) can be generalized to other normaliz-
able forms of the WTD that have the same power-law tail;
the results are also independent of the exact distribution of
the jump lengths, as long as the mean equals zero and the
variance is finite. The mean value (- ) denotes a simultaneous
average over both random variables, waiting time and jump
length.

As a consequence of the divergent mean value of w(7), a
CTRW is a nonequilibrium process: there is no typical relax-
ation time scale. Due to the first jump being at 7=0,
ensemble-averaged CTRW dynamics are nonstationary and
not invariant with time shifts [6,15].

In order to put the following theoretical considerations in
this paper to the test, simulations were performed, the details
of which are reported in the caption of Fig. 1. Individual &
of a confined CTRW simulation are illustrated in Fig. 1 to-
gether with an ensemble average over 1000 such time-
averaged MSDs. The individual &* exhibit a common A de-
pendence, with a spread arising from the fact that time
averages obtained from CTRW trajectories are random quan-
tities [4,5]. Later, we also discuss the distribution of the time-
averaged MSD, &% but first, we analyze the mean value,
(6°).

To understand the behavior of the ensemble averaged (&%)
in Fig. 1, consider the displacement undergone between a
time 7, and a later time 7,+A. Starting the observation of the
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walker at 7,>0 means that an initial waiting time, 7, will
elapse before the walker moves for the first time. We denote
the distribution of these initial waiting times by w,(7,7,).
The process observed in the time interval [7,,7,+A] is an
aging CTRW (ACTRW), i.e., a time-shifted CTRW [15]. The
theory of ACTRWSs describes the process as a function of 7,.
The initial waiting time was derived for 7,5 7 in Ref. [15]
as

TCY

- 3)

wi(7,7,) = aKaT”‘('r—-i-Ta)’

with the numerical factor x,=sin(7a)/ wa. After the initial
waiting time 7 has elapsed, the walker makes a first jump at
7,+7 and its displacement from the present position, x(7,),
after time 7,4 7 will exhibit the same statistical behavior as
the displacement of a CTRW starting at 7=0 at x(0)=0.
Therefore, the ensemble-averaged MSD in [ 7,, 7,4+ A] can be
expressed as

A
<[x(A+Ta)—x(Ta)]2>=f dwy (1, 7)) (A= 1), (4)
0

in which (x*(7)) is the ensemble-averaged MSD of a con-
fined CTRW from the origin in the time interval [0, 7]. We
will use the following approximation for (x?(7)) of a con-
fined CTRW, which can be derived from the fractional dif-
fusion equation (see a detailed derivation in the supplemen-
tary material [17])

L’ ™
<x2(T)>*g{1—Ea(— 7)} (5)
where E,, is the Mittag-Leffler function and
L2 )l/a
= 6
= (e ©

is the typical time at which the Mittag-Leffler function
crosses from the stretched exponential short-7 behavior to
the power-law long-7 domain. The generalized diffusion con-
stant is calculated from the unit time 7, in Eq. (2) and the
variance of the jump length distribution (&x?) as K,
=(&x?)/2T (1 - a) 7§ for the WTD in Eq. (2) [2]. In Eq. (5), 7.
indicates the time after which the boundary condition be-
comes influential. It is assumed throughout this paper that
(x*(7))<L? so that 7,5 7,. The approximation in Eq. (5)
reproduces both the correct short- and long-7 asymptotics but
is not exact in the crossover region, 7= 7.

Performing an ensemble average on both sides of Eq. (1)
and noting that (-) can be swapped with the 7, integral, we
find with Eq. (4)

o A
<52(A,t)>=f wi(D(P(A = 7)dr, )
0

where the notation w;(7) is used for the initial WTD aver-
aged over 7, in the time interval [0,7—A]. Assuming A <7,
the time averaging over 7, € [0,¢] can be performed in Eq.
(3), giving for 7<<t
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Ko 1
wiln) = —=—. 8
WI(T) ll_aTa ( )
Upon performing a Laplace transform, A— u, the convolu-
tion integral in Eq. (7) can be written as a product of the
Laplace transforms of w; and the ensemble-averaged MSD

— L? u? 1

F(u,0)=— , 9

(8w 6 T(1+a)'%1+ (ur,)® ©

where the Laplace transform, z—s, of the Mittag-Leffler
function, L[E (—Bz%)](s)=1/(s+ Bs'~%), has been used.

The derivation of Eq. (9) involved the approximation of
wi(7) in Eq. (8), which is valid for 7,<<7<t, and the ap-
proximation of (x*(7)) in Eq. (5), which deviates from the
exact behavior mainly around 7,.. As an alternative to the
above derivation of (&%) from the initial WTD, (&%) can be
obtained also using the approach for continuous time Lévy
flights introduced by Fogedby [18], leading to a splitting of
the stochastic processes of a CTRW, the jump lengths and
waiting times, both being two independent random variables.
The supplementary material outlines how (%) can be calcu-
lated using such a splitting argument and the exact form of
(8*(u,1)) is derived [17].

Equation (9) can be evaluated for T;1>M>t_l, corre-
sponding to the long-A behavior, and 1>u>7';1, corre-
sponding to the short-A behavior. In the former, long-A case,
we find from {(&*(u,t)) ~u®? that

— L* k, (A
) ~ M (2
(57(A1)) p 1—a<t> . (10)
This equation describes the A>10* behavior in Fig. 1.
(&*(A, 1)) can be obtained only for A=t, and Eq. (10) is valid
only for 7.<<A <. As can be seen from the simulation re-
sults, for A=t the time-averaged MSD does not reach a con-
stant plateau (Fig. 2) and, independent of ¢, increases for all
A <t. However, (6% does not exceed L2/6, as can be derived
from Eq. (7) together with (x’(7))=L?/6 [cf. Eq. (5)]. The
inverse 7 dependence in Eq. (10), illustrated in Fig. 2, allows
for an upper bound without a plateau for any observation
time, ¢, an entirely nonergodic behavior. In comparison, the
ensemble-averaged (not TA) MSD will asymptotically reach
a plateau of L?/6, according to Eq. (5).

The short-A behavior follows with {&*(u,1)) ~u~> as
DA 2Ka
(57(A1)) F(l+a)t1‘”‘A' (11)
Equation (11), valid for 7p<<A<r,, is the free unbounded
CTRW result [5,7]: in the limit of short times (e.g., for A
<10 in Fig. 1) a random walker is not affected by the pres-
ence of the boundary.

The following interpolation between the short- and
long-A domains can be performed

- L’ A%\ [AY
(62>=—K—_‘{1—exp(— c_v—aﬂ—_, (12)
6 a T, ¢

where a=1-a. o
Figures 1-3 illustrate that (&%) exhibits free diffusional
behavior for small A but slows down when the walk is af-
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FIG. 2. (Color online) Simulation length (r) dependence of 6> of
a CTRW with exponent @=0.9 and reflecting boundary (L=20).
The averages are shown over 1000 CTRWs for total lengths, 7,
varying between 107 and 10'' and 100 CTRWs for 10'? time units
(¢ increases from the left to the right). In order that each time series
should contain the same number of points (107), the time resolution
of the longer simulations was reduced. Therefore, the short-A be-
havior of the MSDs of larger ¢ is absent. The quasifree linear-A
behavior breaks down when the boundary becomes sensed at 7,
=13X 1037'0._A A-sublinear MSD, i.e., ~A!=? is seen on longer
time scales. (&) is bounded by the value L?/6. For longer ¢, (&) is
shifted to smaller values but does not reach a constant plateau.

fected by the presence of the boundaries. All MSDs cross
over from linear to sublinear A dependence at the critical
time, 7. Figure 2 illustrates that, conforming to Eq. (6), the
time 7. does not depend on the length of the simulation, 7. In
Fig. 3(A) the scaling with the length of the simulation, ¢,
becomes apparent. When multiplied by 7'~¢, all the MSDs of
each particular value of a coincide and follow Eq. (12) as
seen in Fig. 3(B).

The (%)~ A'~% behavior found in Eq. (10) contrasts with
the A® behavior found in Ref. [5], which arose from the fact
that the time window, in which ~A® was fitted to 6 in Ref.
[5], was confined to times close to ~7.~27 000.

Experimental measurements provide typically a small
number of individual &%, such that the statistics are insuffi-
cient to calculate (5°). Therefore, in order to apply the theory
of the confined CTRW to experimental results rather than
(8%, the distribution of the random variable & is required.
The random nature of & is due to the fact that in the interval
[0,7], over which the time average is taken in Eq. (1), the
number of jumps N is a random variable. The mean, (N), was
derived in Ref. [19]. In Ref. [5], the distribution of & was
derived from the distribution of N for a given ¢. Note that the
t scaling of the mean value, (5°) ~ ! follows from Eq. (9)
and is identical to the free unbounded CTRW in all cases
[Egs. (10)—(12)], as was found in [5,7]. Therefore, the same
arguments as in Ref. [5] apply to the confined CTRW. In
particular, as suggested for the free unbounded CTRW, the
relative width of the distribution of &%,

(@D (P P+
BB = M S " T(+2a)

1, (13

measures the violation of the self-averaging property, which
causes & to be different from (&) for CTRWs with long-
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FIG. 3. (Color online) (A) Scaled, TA MSD, ¢'~%(5%) of CTRWs
with different @=0.5,0.7,0.9 (top down) and reflecting boundaries
(L=20) such that 7. has the values 1.4X 10%*z,, 1.9X 1037, and
1.3X 1037, respectively. For each t=107,10%,... up to 10" and
each a, 1000 simulations, (and for =102 to 104, 100 simulations)
were performed. The figure displays the average over the different
time-averaged MSDs. (B) Fit of Eq. (12) to data of A (dotted), for
the same and further exponents, a=0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and
0.9 (top down). The good fit to the simulation data of the analytical
curve (dashed) demonstrates the validity of the approximations
made in the derivation of Egs. (10) and (11) and the usefulness of
interpolation formula (12).

tailed WTD [1]: in the literature, the term weak ergodicity
breaking has been established in recent years [3-5]. In Fig. 4,
the simulation results for the parameter EB are shown. There
is a good agreement with the prediction of Eq. (13) although
the statistics in some cases is poor.

CTRW (or, equivalently, trapping) has been proposed as a
model explaining subdiffusion in the internal dynamics of
biomolecules [20]. However, in Ref. [6] it was shown that
unbounded CTRW cannot account for the subdiffusive &
seen in MD simulations of single biomolecules. The simula-
tions presented in Ref. [6] reach an equilibrium state, i.e.,
& saturates, reaching a constant value. In contrast, in the
confined CTRW model, (52) does not saturate to a constant
plateau. However, equilibrium would be reached on a time
scale 7> 7,,., were the WTD to possess a time, 7,,,,, below
which (i.e., 7<) Eq. (2) is followed but beyond which
(7> Tya) the WTD decays faster than 772, In this case, for
T<Tna the process behaves as a CTRW, whereas for
T> Thay classical diffusion occurs. Subdiffusion is found on
time scales 7,<7< T, (i.e., times shorter than 7, but
long enough for the system to explore the accessible vol-
ume). For the time-averaged MSD it follows that for A<,
a linear A dependence occurs.
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FIG. 4. (Color online) Ergodicity breaking parameter EB as a
function of the observation time ¢ (logarithmic scale) for various «
from 0.3 to 0.9 (top down, see legend). The parameter was calcu-
lated for A=10° (open markers) and A=10° (filled markers; if only
filled marker is visible, both values coincide). The full lines indicate
the prediction of Eq. (13). The ensemble average was performed
over 1000 realizations for =107, ...,10'"" and 100 realizations for
=102

Given the above considerations, the question arises as to
whether the confined CTRW can describe the subdiffusive
internal dynamics of biomolecules. To examine this, the time
7. can be estimated from the peptide simulation data in Ref.
[6] together with Eq. (6). The required quantities are L ob-
tained from the converged (equilibrium) value of the MSD,
K,, estimated from short MD simulations with high time
resolution and the exponent « taken from the subdiffusive
part of &. It was found that 7,=100 ns along the most
diffusive principal component mode of the simulation [6], a
value longer than the time scale (1 ps to 10 ns) over which
the MSD is seen to be subdiffusive in the simulation. Hence,
the CTRW model with reflecting boundaries cannot account
for the subdiffusion seen. In Ref. [6] an alternative explana-
tion for the subdiffusivity was proposed, involving the fractal
geometry of the energy landscape explored.

A CTRW with the WTD from Eq. (2) is inherently a non-
equilibrium process due to the absence of a characteristic
relaxation time. The present work demonstrates that a CTRW
with reflecting boundaries exhibits a (§%) with linear A de-
pendence up to a critical time, 7., which depends only on the
accessible space and the exponent « in Eq. (2). Beyond T,
the boundary becomes influential and (&%) has a sublinear A
dependence, i.e., (&)~ A!=®. The theoretical behavior of the
(&%) is analyzed, the relative width of the distribution of & is
determined, and the results corroborated by extensive com-
puter simulations. The present theory paves the way for the
application of CTRW to time-averaged quantities in the pres-
ence of distinct boundaries and is therefore expected to be of
wide applicability in the analysis and interpretation of ex-
perimental and simulation derived time series involving con-
fined diffusive processes.

J.C.S. acknowledges support from a DOE Laboratory-
Directed Research and Development grant. LM.S. thankfully
acknowledges financial support by DFG within the SFB555
research program.

011109-4



SUBDIFFUSION IN TIME-AVERAGED, CONFINED...

[1] J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).

[2] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000); J. Phys. A
37, R161 (2004).

[3] G. Bel and E. Barkai, Phys. Rev. Lett. 94, 240602 (2005).

[4] A. Rebenshtok and E. Barkai, Phys. Rev. Lett. 99, 210601
(2007).

[5]1Y. He, S. Burov, R. Metzler, and E. Barkai, Phys. Rev. Lett.
101, 058101 (2008).

[6] T. Neusius, 1. Daidone, I. M. Sokolov, and J. C. Smith, Phys.
Rev. Lett. 100, 188103 (2008).

[7] A. Lubelski, I. M. Sokolov, and J. Klafter, Phys. Rev. Lett.
100, 250602 (2008).

[8] S. Condamin, V. Tejedor, R. Voituriez, O. Bénichou, and J.
Klafter, Proc. Natl. Acad. Sci. U.S.A. 105, 5675 (2008).

[9] M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, Biophys. J.
87, 3518 (2004); G. Guigas and M. Weiss, ibid. 94, 90 (2008);
I. Golding and E. C. Cox, Phys. Rev. Lett. 96, 098102 (2006);
I. M. Toli¢-Ngrrelykke, E.-L. Munteanu, G. Thon, L. Odder-
shede, and K. Berg-Sgrensen, ibid. 93, 078102 (2004).

[10] M. Wachsmuth, W. Waldeck, and J. Langowski, J. Mol. Biol.
298, 677 (2000); M. Platani, I. Goldberg, A. I. Lamond, and J.
R. Swedlow, Nat. Cell Biol. 4, 502 (2002).

[11] N. L. Andrews, K. A. Lidke, J. R. Pfeiffer, A. R. Burns, B. S.
Wilson, J. M. Oliver, and D. S. Lidke, Nat. Cell Biol. 10, 955
(2008); M. A. Deverall, E. Gindl, E.-K. Sinner, H. Besir, J.
Ruehe, M. J. Saxton, and C. A. Naumann, Biophys. J. 88,
1875 (2005); K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki,
R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and
A. Kusumi, ibid. 86, 4075 (2004); Y. M. Umemura, M. Vrljic,
S. Y. Nishimura, T. K. Fujiwara, K. G. N. Suzuki, and A.
Kusumi, ibid. 95, 435 (2008).

[12] V. Nechyporuk-Zloy, P. Dieterich, H. Oberleithner, C. Stock,
and A. Schwab, Am. J. Physiol.: Cell Physiol. 294, C1096

PHYSICAL REVIEW E 80, 011109 (2009)

(2008); S. Wieser, G. J. Schiitz, M. E. Cooper, and H. Stock-
inger, Appl. Phys. Lett. 91, 233901 (2007).

[13] S. Rols, J. Cambedouzou, M. Chorro, H. Schober, V.
Agatonov, P. Launois, V. Davydov, A. V. Rakhmanina, H. Ka-
taura, and J.-L. Sauvajol, Phys. Rev. Lett. 101, 065507 (2008);
H. Jobic and B. Farago, J. Chem. Phys. 129, 171102 (2008);
M. J. Saxton and K. Jacobson, Annu. Rev. Biophys. Biomol.
Struct. 26, 373 (1997); M. J. Saxton, Biophys. J. 92, 1178
(2007); D. Nicolau Jr., J. Hancock, and K. Burrage, ibid. 92,
1975 (2007); S. Wieser, M. Axmann, and G. J. Schiitz, ibid.
95, 5988 (2008); I. Y. Wong, M. L. Gardel, D. R. Reichman,
E. R. Weeks, M. T. Valentine, A. R. Bausch, and D. A. Weitz,
Phys. Rev. Lett. 92, 178101 (2004).

[14] M. E. Rhodes, B. Bijeljic, and M. J. Blunt, Adv. Water Resour.
31, 1527 (2008); F. Bauget and M. Fourar, J. Contam. Hydrol.
100, 137 (2008); T. Bandyopadhyay, J. Chem. Phys. 128,
114712 (2008); J. Sung and R. J. Silbey, Phys. Rev. Lett. 91,
160601 (2003); M. A. Lomholt, I. M. Zaid, and R. Metzler,
ibid. 98, 200603 (2007).

[15] E. Barkai and Y.-C. Cheng, J. Chem. Phys. 118, 6167 (2003).

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes in C (Cambridge University Press,
Cambridge, England, 1992).

[17] See EPAPS Document No. E-PLEEES-80-184906 for math-
ematical details of the present paper. For more information on
EPAPS, see http://www.aip.org/pubservs/epaps.html.

[18] H. C. Fogedby, Phys. Rev. E 50, 1657 (1994).

[19] I. M. Sokolov, A. Blumen, and J. Klafter, Europhys. Lett. 56,
175 (2001); Physica A 302, 268 (2001).

[20] H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie, L.
Rech, S. Cova, L. Xun, and X. Sunney Xie, Science 302, 262
(2003); G. Luo, I. Andricioaei, X. Sunney Xie, and M. Kar-
plus, J. Phys. Chem. B 110, 9363 (2006).

011109-5



